How to Scrape Twitter Using Python and Residential Proxies

Twitter, also known as X if you prefer, is a goldmine of real-time insights. You can track brand sentiment, spot viral trends, or gather data for research, and its value is undeniable. If you have ever tried scraping it, you know the difficulty. Your script may start strong but soon runs into problems. Requests fail, accounts get blocked, and frustration sets in. This is not a bug but intentional design. Twitter is built to detect bots and stop them cold. The good news is that it’s not impossible. With the right approach, you can scrape Twitter reliably, and the key to that approach is using a premium residential proxy service.

SwiftProxy
By - Linh Tran
2025-12-01 14:48:09

 How to Scrape Twitter Using Python and Residential Proxies

Why Most Twitter Scrapers Fail

When you scrape Twitter, your script is basically sending a flood of requests to the platform's servers. Twitter knows how to spot the difference between a human scrolling and an automated bot. Most scrapers fail for three main reasons:

IP Request Limiting

Send hundreds of requests from the same IP in minutes? That's a huge red flag. Twitter throttles your requests to enforce fair use.

IP Reputation

Datacenter IPs are fast—but suspicious. Twitter can detect these easily, marking your traffic as non-human.

Session Inconsistency

Logging in from one IP, then switching mid-session? That's a trigger for security checks.

Success isn't about brute force—it's about blending in. You need to mimic real users with diverse IPs and consistent sessions.

The Right Proxy Makes All the Difference

A proxy acts as a middleman, hiding your real IP. But not all proxies are created equal.

Datacenter Proxies: Cheap and fast. But easily flagged. They're the first to be blocked.

Residential Proxies: Real IPs from actual ISPs. To Twitter, these look like ordinary users. Hard to detect. Hard to block. This is your golden ticket.

Scraping Twitter with Python and Proxy

Here's a practical guide to integrating proxy into your workflow.

Simple Requests (Static Content)

import requests

proxy_host = "your_proxy_host.proxy.com"
proxy_port = "your_port"
proxy_user = "your_username"
proxy_pass = "your_password"

target_url = "https://twitter.com/public-profile-example"

proxies = {
    "http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
    "https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
}

try:
    response = requests.get(target_url, proxies=proxies, timeout=15)
    if response.status_code == 200:
        print("Page fetched successfully via proxy!")
        print(response.text[:500])
    else:
        print(f"Failed. Status code: {response.status_code}")
except requests.exceptions.RequestException as e:
    print(f"An error occurred: {e}")

Selenium for JavaScript-Heavy Pages

from selenium import webdriver
from selenium.webdriver.chrome.options import Options

PROXY_HOST = "your_proxy_host.proxy.com"
PROXY_PORT = "your_port"
PROXY_USER = "your_username"
PROXY_PASS = "your_password"

# --- Setup Proxy Extension ---
manifest_json = """{
    "version": "1.0.0", "manifest_version": 2, "name": "Chrome Proxy",
    "permissions": ["proxy", "tabs", "unlimitedStorage", "storage", "<all_urls>", "webRequest", "webRequestBlocking"],
    "background": {"scripts": ["background.js"]}
}"""

background_js = f"""
var config = { {
    mode: "fixed_servers",
    rules: { {
        
        singleProxy: { { scheme: "http", host: "{PROXY_HOST}", port:parseInt({PROXY_PORT})                      }},
 bypassList: ["localhost"]
    }}
}};
chrome.proxy.settings.set({ {value: config, scope: "regular"}}, function() { {}});
function callbackFn(details) { {
    return { { authCredentials: { { username: "{PROXY_USER}", password: "{PROXY_PASS}" }} }};
}}
chrome.webRequest.onAuthRequired.addListener(callbackFn, { {urls: ["<all_urls>"]}}, ['blocking']);
"""
plugin_file = 'proxy_auth_plugin.zip'
with zipfile.ZipFile(plugin_file, 'w') as zp:
    zp.writestr("manifest.json", manifest_json)
    zp.writestr("background.js", background_js)

chrome_options = Options()
chrome_options.add_extension(plugin_file)

driver = webdriver.Chrome(options=chrome_options)
driver.get("https://twitter.com/elonmusk")
print("Loaded Twitter page via proxy!")

driver.quit()

Conclusion

Scraping Twitter effectively requires strategy, not brute force. By combining Python with reliable residential proxies, you can gather data safely, maintain consistent sessions, and mimic real users. Whether tracking trends, analyzing sentiment, or conducting research, the right approach makes the process smooth, repeatable, and much more manageable.

Note sur l'auteur

SwiftProxy
Linh Tran
Linh Tran est une rédactrice technique basée à Hong Kong, avec une formation en informatique et plus de huit ans d'expérience dans le domaine des infrastructures numériques. Chez Swiftproxy, elle se spécialise dans la simplification des technologies proxy complexes, offrant des analyses claires et exploitables aux entreprises naviguant dans le paysage des données en rapide évolution en Asie et au-delà.
Analyste technologique senior chez Swiftproxy
Le contenu fourni sur le blog Swiftproxy est destiné uniquement à des fins d'information et est présenté sans aucune garantie. Swiftproxy ne garantit pas l'exactitude, l'exhaustivité ou la conformité légale des informations contenues, ni n'assume de responsabilité pour le contenu des sites tiers référencés dans le blog. Avant d'engager toute activité de scraping web ou de collecte automatisée de données, il est fortement conseillé aux lecteurs de consulter un conseiller juridique qualifié et de revoir les conditions d'utilisation applicables du site cible. Dans certains cas, une autorisation explicite ou un permis de scraping peut être requis.
FAQ
{{item.content}}
Charger plus
Afficher moins
Join SwiftProxy Discord community Chat with SwiftProxy support via WhatsApp Chat with SwiftProxy support via Telegram
Chat with SwiftProxy support via Email