How to Scrape TripAdvisor Data with Python Like a Pro

SwiftProxy
By - Linh Tran
2025-06-30 14:20:44

How to Scrape TripAdvisor Data with Python Like a Pro

TripAdvisor hosts millions of user reviews — hotels, restaurants, experiences — a goldmine for anyone serious about travel analysis or competitor intelligence. Imagine tapping into that wealth of insights automatically, in real-time, and turning raw reviews into actionable data. Sounds powerful, right? It is. And you don't need to be a coding wizard to do it.

In this guide, we'll walk you through a clean, straightforward Python scraper that extracts rich TripAdvisor data and saves it in CSV format for your analysis. No fluff. Just the tools, techniques, and code you need to dive deep.

Install Your Tools

We'll build this scraper with two Python heavy-hitters:

requests — to fetch webpage content

lxml — to parse and extract data with precision using XPath

Fire up your terminal and run:

pip install requests lxml

Simple. Done.

Headers and Proxies

Websites guard their data fiercely. TripAdvisor is no exception. To stay under the radar:

Set your request headers carefully. Mimic real browsers with a solid User-Agent string to avoid immediate blocking.

Use proxies. Rotate IP addresses to dodge rate limits and IP bans. This is crucial for scraping at scale.

Pairing reliable headers with proxies creates a double layer that helps your scraper run more smoothly and last longer.

Import and Define Your Targets

Start by importing libraries and listing your target URLs — the hotel pages you want to scrape.

import requests
from lxml.html import fromstring
import csv

urls_list = [
    'https://www.tripadvisor.com/Hotel_1_URL',
    'https://www.tripadvisor.com/Hotel_2_URL'
]

Keep your URL list handy and expandable.

Craft Your Headers

Here's a robust headers dictionary that mimics a legit browser session perfectly:

headers = {
    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8',
    'accept-language': 'en-US,en;q=0.9',
    'cache-control': 'no-cache',
    'pragma': 'no-cache',
    'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
}

This setup sends the right signals so TripAdvisor treats your request like a genuine browser visit.

Keep Your IP Fresh with Proxies

Add your proxy details here:

proxies = {
    'http': 'http://your_proxy_address:port',
    'https': 'http://your_proxy_address:port',
}

Replace 'your_proxy_address:port' with your actual proxy provider info. Rotate proxies regularly to avoid getting blocked.

Fetch, Parse, Extract

Loop through your URLs, request each page, parse the HTML, then extract data with XPath selectors:

extracted_data = []

for url in urls_list:
    response = requests.get(url, headers=headers, proxies=proxies)
    parser = fromstring(response.text)
    
    title = parser.xpath('//h1[@data-automation="mainH1"]/text()')[0]
    about = parser.xpath('//div[@class="_T FKffI bmUTE"]/div/div/text()')[0].strip()
    images_url = parser.xpath('//div[@data-testid="media_window_test"]/div/div/button/picture/source/@srcset')
    price = parser.xpath('//div[@data-automation="commerce_module_visible_price"]/text()')[0]
    ratings = parser.xpath('//div[@class="jVDab W f u w GOdjs"]/@aria-label')[0].split(' ')[0]
    features = parser.xpath('//div[@class="f Q2 _Y tyUdl"]/div[2]/span/span/span/text()')
    reviews = parser.xpath('//span[@class="JguWG"]/span//text()')
    listing_by = parser.xpath('//div[@class="biGQs _P pZUbB KxBGd"]/text()')[0]
    similar_experiences = parser.xpath('//div[@data-automation="shelfCard"]/a/@href')
    
    data = {
        'title': title,
        'about': about,
        'price': price,
        'listing_by': listing_by,
        'ratings': ratings,
        'image_urls': images_url,
        'features': features,
        'reviews': reviews,
        'similar_experiences': similar_experiences
    }
    
    extracted_data.append(data)

Notice how each XPath targets specific, meaningful data points. This is precision scraping.

Save Your Harvest and Export to CSV

Finally, let's store your treasure trove into a CSV file — easy to open, analyze, and share.

csv_columns = ['title', 'about', 'price', 'listing_by', 'ratings', 'image_urls', 'features', 'reviews', 'similar_experiences']

with open("tripadvisor_data.csv", 'w', newline='', encoding='utf-8') as csvfile:
    writer = csv.DictWriter(csvfile, fieldnames=csv_columns)
    writer.writeheader()
    for data in extracted_data:
        writer.writerow(data)

print('Data saved successfully to tripadvisor_data.csv')

You now have clean, structured TripAdvisor data at your fingertips.

Why Scraper Matters

With this scraper, you're not just pulling data — you're unlocking insights:

Market Trends: See which hotels shine and why.

Consumer Sentiment: Analyze reviews to understand traveler moods.

Competitive Edge: Monitor your rivals effortlessly.

Strategic Decisions: Back your moves with data, not guesses.

Master this technique, and you open doors to powerful, data-driven decisions in travel, hospitality, and beyond.

Final Thoughts

The scraper does more than gather information. It provides a clear window into traveler behavior and market dynamics. With accurate, up-to-date TripAdvisor data at your disposal, you can make informed decisions that boost your competitive position and improve customer experience. Harness the power of data-driven insights to lead with confidence in the ever-evolving travel industry.

Note sur l'auteur

SwiftProxy
Linh Tran
Linh Tran est une rédactrice technique basée à Hong Kong, avec une formation en informatique et plus de huit ans d'expérience dans le domaine des infrastructures numériques. Chez Swiftproxy, elle se spécialise dans la simplification des technologies proxy complexes, offrant des analyses claires et exploitables aux entreprises naviguant dans le paysage des données en rapide évolution en Asie et au-delà.
Analyste technologique senior chez Swiftproxy
Le contenu fourni sur le blog Swiftproxy est destiné uniquement à des fins d'information et est présenté sans aucune garantie. Swiftproxy ne garantit pas l'exactitude, l'exhaustivité ou la conformité légale des informations contenues, ni n'assume de responsabilité pour le contenu des sites tiers référencés dans le blog. Avant d'engager toute activité de scraping web ou de collecte automatisée de données, il est fortement conseillé aux lecteurs de consulter un conseiller juridique qualifié et de revoir les conditions d'utilisation applicables du site cible. Dans certains cas, une autorisation explicite ou un permis de scraping peut être requis.
Join SwiftProxy Discord community Chat with SwiftProxy support via WhatsApp Chat with SwiftProxy support via Telegram
Chat with SwiftProxy support via Email